Bitcoin Code Review 2020: is It a Scam or Legit? Know

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Why Osana takes so long? (Programmer's point of view on current situation)

I decided to write a comment about «Why Osana takes so long?» somewhere and what can be done to shorten this time. It turned into a long essay. Here's TL;DR of it:
The cost of never paying down this technical debt is clear; eventually the cost to deliver functionality will become so slow that it is easy for a well-designed competitive software product to overtake the badly-designed software in terms of features. In my experience, badly designed software can also lead to a more stressed engineering workforce, in turn leading higher staff churn (which in turn affects costs and productivity when delivering features). Additionally, due to the complexity in a given codebase, the ability to accurately estimate work will also disappear.
Junade Ali, Mastering PHP Design Patterns (2016)
Longer version: I am not sure if people here wanted an explanation from a real developer who works with C and with relatively large projects, but I am going to do it nonetheless. I am not much interested in Yandere Simulator nor in this genre in general, but this particular development has a lot to learn from for any fellow programmers and software engineers to ensure that they'll never end up in Alex's situation, especially considering that he is definitely not the first one to got himself knee-deep in the development hell (do you remember Star Citizen?) and he is definitely not the last one.
On the one hand, people see that Alex works incredibly slowly, equivalent of, like, one hour per day, comparing it with, say, Papers, Please, the game that was developed in nine months from start to finish by one guy. On the other hand, Alex himself most likely thinks that he works until complete exhaustion each day. In fact, I highly suspect that both those sentences are correct! Because of the mistakes made during early development stages, which are highly unlikely to be fixed due to the pressure put on the developer right now and due to his overall approach to coding, cost to add any relatively large feature (e.g. Osana) can be pretty much comparable to the cost of creating a fan game from start to finish. Trust me, I've seen his leaked source code (don't tell anybody about that) and I know what I am talking about. The largest problem in Yandere Simulator right now is its super slow development. So, without further ado, let's talk about how «implementing the low hanging fruit» crippled the development and, more importantly, what would have been an ideal course of action from my point of view to get out. I'll try to explain things in the easiest terms possible.
  1. else if's and lack any sort of refactoring in general
The most «memey» one. I won't talk about the performance though (switch statement is not better in terms of performance, it is a myth. If compiler detects some code that can be turned into a jump table, for example, it will do it, no matter if it is a chain of if's or a switch statement. Compilers nowadays are way smarter than one might think). Just take a look here. I know that it's his older JavaScript code, but, believe it or not, this piece is still present in C# version relatively untouched.
I refactored this code for you using C language (mixed with C++ since there's no this pointer in pure C). Take a note that else if's are still there, else if's are not the problem by itself.
The refactored code is just objectively better for one simple reason: it is shorter, while not being obscure, and now it should be able to handle, say, Trespassing and Blood case without any input from the developer due to the usage of flags. Basically, the shorter your code, the more you can see on screen without spreading your attention too much. As a rule of thumb, the less lines there are, the easier it is for you to work with the code. Just don't overkill that, unless you are going to participate in International Obfuscated C Code Contest. Let me reiterate:
Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.
Antoine de Saint-Exupéry
This is why refactoring — activity of rewriting your old code so it does the same thing, but does it quicker, in a more generic way, in less lines or simpler — is so powerful. In my experience, you can only keep one module/class/whatever in your brain if it does not exceed ~1000 lines, maybe ~1500. Splitting 17000-line-long class into smaller classes probably won't improve performance at all, but it will make working with parts of this class way easier.
Is it too late now to start refactoring? Of course NO: better late than never.
  1. Comments
If you think that you wrote this code, so you'll always easily remember it, I have some bad news for you: you won't. In my experience, one week and that's it. That's why comments are so crucial. It is not necessary to put a ton of comments everywhere, but just a general idea will help you out in the future. Even if you think that It Just Works™ and you'll never ever need to fix it. Time spent to write and debug one line of code almost always exceeds time to write one comment in large-scale projects. Moreover, the best code is the code that is self-evident. In the example above, what the hell does (float) 6 mean? Why not wrap it around into the constant with a good, self-descriptive name? Again, it won't affect performance, since C# compiler is smart enough to silently remove this constant from the real code and place its value into the method invocation directly. Such constants are here for you.
I rewrote my code above a little bit to illustrate this. With those comments, you don't have to remember your code at all, since its functionality is outlined in two tiny lines of comments above it. Moreover, even a person with zero knowledge in programming will figure out the purpose of this code. It took me less than half a minute to write those comments, but it'll probably save me quite a lot of time of figuring out «what was I thinking back then» one day.
Is it too late now to start adding comments? Again, of course NO. Don't be lazy and redirect all your typing from «debunk» page (which pretty much does the opposite of debunking, but who am I to judge you here?) into some useful comments.
  1. Unit testing
This is often neglected, but consider the following. You wrote some code, you ran your game, you saw a new bug. Was it introduced right now? Is it a problem in your older code which has shown up just because you have never actually used it until now? Where should you search for it? You have no idea, and you have one painful debugging session ahead. Just imagine how easier it would be if you've had some routines which automatically execute after each build and check that environment is still sane and nothing broke on a fundamental level. This is called unit testing, and yes, unit tests won't be able to catch all your bugs, but even getting 20% of bugs identified at the earlier stage is a huge boon to development speed.
Is it too late now to start adding unit tests? Kinda YES and NO at the same time. Unit testing works best if it covers the majority of project's code. On the other side, a journey of a thousand miles begins with a single step. If you decide to start refactoring your code, writing a unit test before refactoring will help you to prove to yourself that you have not broken anything without the need of running the game at all.
  1. Static code analysis
This is basically pretty self-explanatory. You set this thing once, you forget about it. Static code analyzer is another «free estate» to speed up the development process by finding tiny little errors, mostly silly typos (do you think that you are good enough in finding them? Well, good luck catching x << 4; in place of x <<= 4; buried deep in C code by eye!). Again, this is not a silver bullet, it is another tool which will help you out with debugging a little bit along with the debugger, unit tests and other things. You need every little bit of help here.
Is it too late now to hook up static code analyzer? Obviously NO.
  1. Code architecture
Say, you want to build Osana, but then you decided to implement some feature, e.g. Snap Mode. By doing this you have maybe made your game a little bit better, but what you have just essentially done is complicated your life, because now you should also write Osana code for Snap Mode. The way game architecture is done right now, easter eggs code is deeply interleaved with game logic, which leads to code «spaghettifying», which in turn slows down the addition of new features, because one has to consider how this feature would work alongside each and every old feature and easter egg. Even if it is just gazing over one line per easter egg, it adds up to the mess, slowly but surely.
A lot of people mention that developer should have been doing it in object-oritented way. However, there is no silver bullet in programming. It does not matter that much if you are doing it object-oriented way or usual procedural way; you can theoretically write, say, AI routines on functional (e.g. LISP)) or even logical language if you are brave enough (e.g. Prolog). You can even invent your own tiny programming language! The only thing that matters is code quality and avoiding the so-called shotgun surgery situation, which plagues Yandere Simulator from top to bottom right now. Is there a way of adding a new feature without interfering with your older code (e.g. by creating a child class which will encapsulate all the things you need, for example)? Go for it, this feature is basically «free» for you. Otherwise you'd better think twice before doing this, because you are going into the «technical debt» territory, borrowing your time from the future by saying «I'll maybe optimize it later» and «a thousand more lines probably won't slow me down in the future that much, right?». Technical debt will incur interest on its own that you'll have to pay. Basically, the entire situation around Osana right now is just a huge tale about how just «interest» incurred by technical debt can control the entire project, like the tail wiggling the dog.
I won't elaborate here further, since it'll take me an even larger post to fully describe what's wrong about Yandere Simulator's code architecture.
Is it too late to rebuild code architecture? Sadly, YES, although it should be possible to split Student class into descendants by using hooks for individual students. However, code architecture can be improved by a vast margin if you start removing easter eggs and features like Snap Mode that currently bloat Yandere Simulator. I know it is going to be painful, but it is the only way to improve code quality here and now. This will simplify the code, and this will make it easier for you to add the «real» features, like Osana or whatever you'd like to accomplish. If you'll ever want them back, you can track them down in Git history and re-implement them one by one, hopefully without performing the shotgun surgery this time.
  1. Loading times
Again, I won't be talking about the performance, since you can debug your game on 20 FPS as well as on 60 FPS, but this is a very different story. Yandere Simulator is huge. Once you fixed a bug, you want to test it, right? And your workflow right now probably looks like this:
  1. Fix the code (unavoidable time loss)
  2. Rebuild the project (can take a loooong time)
  3. Load your game (can take a loooong time)
  4. Test it (unavoidable time loss, unless another bug has popped up via unit testing, code analyzer etc.)
And you can fix it. For instance, I know that Yandere Simulator makes all the students' photos during loading. Why should that be done there? Why not either move it to project building stage by adding build hook so Unity does that for you during full project rebuild, or, even better, why not disable it completely or replace with «PLACEHOLDER» text for debug builds? Each second spent watching the loading screen will be rightfully interpreted as «son is not coding» by the community.
Is it too late to reduce loading times? Hell NO.
  1. Jenkins
Or any other continuous integration tool. «Rebuild a project» can take a long time too, and what can we do about that? Let me give you an idea. Buy a new PC. Get a 32-core Threadripper, 32 GB of fastest RAM you can afford and a cool motherboard which would support all of that (of course, Ryzen/i5/Celeron/i386/Raspberry Pi is fine too, but the faster, the better). The rest is not necessary, e.g. a barely functional second hand video card burned out by bitcoin mining is fine. You set up another PC in your room. You connect it to your network. You set up ramdisk to speed things up even more. You properly set up Jenkins) on this PC. From now on, Jenkins cares about the rest: tracking your Git repository, (re)building process, large and time-consuming unit tests, invoking static code analyzer, profiling, generating reports and whatever else you can and want to hook up. More importantly, you can fix another bug while Jenkins is rebuilding the project for the previous one et cetera.
In general, continuous integration is a great technology to quickly track down errors that were introduced in previous versions, attempting to avoid those kinds of bug hunting sessions. I am highly unsure if continuous integration is needed for 10000-20000 source lines long projects, but things can be different as soon as we step into the 100k+ territory, and Yandere Simulator by now has approximately 150k+ source lines of code. I think that probably continuous integration might be well worth it for Yandere Simulator.
Is it too late to add continuous integration? NO, albeit it is going to take some time and skills to set up.
  1. Stop caring about the criticism
Stop comparing Alex to Scott Cawton. IMO Alex is very similar to the person known as SgtMarkIV, the developer of Brutal Doom, who is also a notorious edgelord who, for example, also once told somebody to kill himself, just like… However, being a horrible person, SgtMarkIV does his job. He simply does not care much about public opinion. That's the difference.
  1. Go outside
Enough said. Your brain works slower if you only think about games and if you can't provide it with enough oxygen supply. I know that this one is probably the hardest to implement, but…
That's all, folks.
Bonus: Do you think how short this list would have been if someone just simply listened to Mike Zaimont instead of breaking down in tears?
submitted by Dezhitse to Osana [link] [comments]

[ CryptoCurrency ] Comparison between Avalanche, Cosmos and Polkadot

[ 🔴 DELETED 🔴 ] Topic originally posted in CryptoCurrency by xSeq22x [link]
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/lg16iwk2dhq51.png?width=428&format=png&auto=webp&s=6c899ee69800dd6c5e2900d8fa83de7a43c57086

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/Eb8xkDi_PUg

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/_-k0xkooSlA

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
https://youtu.be/mWBzFmzzBAg

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/ththwq5qdhq51.png?width=1000&format=png&auto=webp&s=92f75152c90d984911db88ed174ebf3a147ca70d

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/lv2h7g9sdhq51.png?width=1000&format=png&auto=webp&s=56eada6e8c72dbb4406d7c5377ad15608bcc730e

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/qe8e5ltudhq51.png?width=1000&format=png&auto=webp&s=18a2866104590f81a818690337f9121161dda890

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/0mnvpnzwdhq51.png?width=1000&format=png&auto=webp&s=8927ff2821415817265be75c59261f83851a2791

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/rsctxi6zdhq51.png?width=1000&format=png&auto=webp&s=ff762dea3cfc2aaaa3c8fc7b1070d5be6759aac2

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/7phaylb1ehq51.png?width=1000&format=png&auto=webp&s=d86d2ec49de456403edbaf27009ed0e25609fbff

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/l775gue3ehq51.png?width=1000&format=png&auto=webp&s=b7c4b5802ceb1a9307bd2a8d65f393d1bcb0d7c6

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/zb72eto5ehq51.png?width=1000&format=png&auto=webp&s=0ee102a2881d763296ad9ffba20667f531d2fd7a
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/fwi3clz7ehq51.png?width=1388&format=png&auto=webp&s=c91c1645a4c67defd5fc3aaec84f4a765e1c50b6
xSeq22x your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

[Table] IAmA dark web expert, investigative journalist and true crime author. I’ve met dark web kingpins in far flung prisons and delved the murky depths of child predator forums. I’ve written six books and over a dozen Casefile podcast episodes. AMA (part 2/2)

Source | Guestbook
Previous thread
Questions Answers
Around here nobody talks about the argument that increased regulation of the internet would help stop child predators. Is that true, and if so where do you fall on the Net Neutrality vs law enforcement spectrum? No I don't think that's true at all. Child predators have been around much longer than the internet, and I would argue child abuse was more prevalent 50+ years ago when children were seen and not heard and it wasn't talked about. The dark web hasn't created more predators, it has just given them a new place to gather and hang out.
The one thing I found really interesting when I was lurking the forums of the child predators was their frustration about how children are now taught from a very young age that certain touching and acts are wrong and that they shouldn't keep certain secrets. It came up over and over again that they could not abuse certain children because they knew those children had someone they would tell. It was pretty clear that education was a child's best defence against getting abused.
the below is a reply to the above
That's so interesting, thanks for the AMA! Can you remember any other thing that a child could do in order to protect himself from being abused? What other characteristics do the abusers hate in potential victims? That seems to be the main one. Kids who speak up and who have close relationships with one or more people they are likely to confide in
What do folks talk about in the child predator forums? Do they like give each other advice on how to improve their craft? Yes, quite literally. The give each other tips on how not to get caught, how to edit out incriminating details in videos, how to drug children, techniques for convincing kids not to tell etc
the below is a reply to the above
Given your insight into how predators operate, do you have any advice for parents on protecting their kids? I'll cut'n'paste a response i gave to someone else about this, because it was something that really stuck out to me:
The one thing I found really interesting when I was lurking the forums of the child predators was their frustration about how children are now taught from a very young age that certain touching and acts are wrong and that they shouldn't keep certain secrets. It came up over and over again that they could not abuse certain children because they knew those children had someone they would tell. It was pretty clear that education was a child's best defence against getting abused. Kids who speak up and who have close relationships with one or more people they are likely to confide in
Has the exponential increase in Bitcoin value affected darknet dealers in any profound way? I can imagine that some drug dealers were sitting on quite a large sum of Bitcoin when the value shot up. Crypto purists hate to admit it, but bitcoin would not be where it is today without Silk Road. It was sitting at less than a dollar when Silk Road began and the markets showed a robust use case for cryptocurrency and as the markets grew, so did the demand for bitcoin. It also provided real-life use data for those who were not interested in drugs but who weren't sure if it had practical application. When SR went down, Bitcoin was at about $650 and it continued to grow as adoption became more mainstream. There are many many stories of drug dealers (and at least one faux-hitman!) who gained most of their wealth not by selling the drugs, but by the growth in value of their bitcoin holdings
Since you have a lot of experience with them online. Do you think pedophiles(not child abusers) should be treated as criminals, or as people suffering from a mental illness? Contact offenders should be treated as criminals, because they are criminals. They have abused or hurt someone. Same with those who support the creation and dissemination of child abuse materials.
Pedophiles who do not act on their urges should be given as much help as humanly possible.
Are there any mysterious or suspicious pages or communities that you haven’t been able to access? Anything that seems especially weird? there are a lot of Russian communities that I can't access, mostly because I don't speak Russian. Some of the more technical hacking communities have entry barriers that I'm not technical enough to score an invite to
How much these bad people really exist out there? Hundreds? Thousands? More? It depends what you mean by bad. If you mean people who use the dark web to buy drugs (who I do not consider bad) then there are many many thousands. There are also thousands of people who deal in stolen information to make money.
Unfortunately there are also thousands of child predators and the dark web has provided a "safe space" for them to come together to share materials and "tips". I hope this is where most of the resources of law enforcement are concentrated
Ehy mine is a rare question: what do you know about art on dark web? I'm talking about the black market made of stolen important pieces from museums, art used as value to money laundry and other criminal affairs I'm an artist and what I know is people don't think too much about the dark side of art and probably they need to open their eyes about I really haven't come across much in the way of that. Some of the markets have an "art" section, but that is mostly blotter art
How accurate are the legends? Any legends in particular? For a lowdown copied from a post I made in another forum:
1Red Rooms  The one that is most persistent is the myth of the "Red Room" - live streaming of torture/rape that ends in the murder of the victim and which people can pay to watch, or even bid to type in commands for the torturer to carry out (highest bid wins!). The most famous was the “ISIS Red Room” pictured above, where people could provide instructions to torture captured terrorists - you can read what happened here.
People have this idea of Hostel with webcams exist all over the dark web, but you just need an invite to get into them. It's ridiculous. They don't exist. They certainly wouldn't exist on Tor. But people are desperate to believe and they always come back with "You can't prove they don't exist, people are crazy, therefore they must exist." Picture my eyes rolling here.
2.Hitman sites
I don't think many people are taken in by the hitmen sites anymore, though the press loves playing up the fact that there are sites offering up hitman services. But every single one of them has turned out to be a scam, especially Besa Mafia, the one that did the most marketing. Again, you can read about it at the same link as above.
3.Exotic animals  People are always asking where they can find markets for exotic animals. Obviously the illegal trade in exotic animals exists, and some communications and transactions may well take place over Tor, but there are no markets like the drug markets where you can go and look at a picture and then put a tiger or ocelot or something into your basket and buy it with bitcoin.
SO WHAT DOES HAPPEN ON THE DARK WEB?
1.People buy and sell drugs.
The drug markets are more busy than ever. You have probably heard of Silk Road, the most famous online drug market that got busted a few years ago and the owner sent to prison for two consecutive life terms? A lot of people thought that was the end of drugs being sold on the dark web. In fact, dark web sales of drugs have tripled since the shutdown of Silk Road.
The reason people buy drugs this way is that for many they offer a safer alternative for people who are going to do drugs anyway. There is no possibility of any violence. The vast majority of the time a buyer knows exactly what they are getting, because of the feedback and rating system. That's not the case in a nightclub, or even friends-of-friends, where you just blindly accept that the pill, powder or tab is what the seller says it is.
2.People buy and sell other illegal things
Mostly they buy and sell stolen credit cards and financial information, fake IDs (though lots of these are scams), personal information, “dumps” of hacked data and fraud-related items. For a long time, a seller was making a fortune selling fake discount coupons that really worked.
3.People access and create childporn  Unlike the other markets, the CP market is generally not for money, but rather they are groups who swap vile images and videos for free. The worst of the worst is called “hurtcore’. Thankfully, most of the people behind the worst sites have been arrested and put in jail.
4.People talk about stuff
There are plenty of sites, forums and chatrooms where people talk about all sorts of things - conspiracies, aliens, weird stuff. They take advantage of the anonymity.
5.People anonymously release information
Whistleblowers use the dark web to release information and make sure their identities won't be compromised. You will find Wikileaks, for example, on the dark web.
6.People surf the web anonymously
The number 1 thing people use the dark web for is just to surf the web completely anonymously. Not everybody wants to be tracked by advertisers.
I have a question: what are the odds of the casual Darkweb drug buyer - not buying mega loads all the time - the occasional purchase - what are the risks of being busted? Kinda figuring pretty low. But you’re the expert. What do you think? Obviously there is always a risk, but the risk is very low. It is rare for personal amounts to be seized. Even if a package is seized, there's usually no resources to follow it up. Many people report simply receiving a letter from Customs saying they have seized what they believe is contraband and the person has a choice of going to claim it or it will be destroyed. Even if LE does knock on the door there is plausible deniability: "I don't know who sent that stuff to me".
So yeah, rare, but it does happen. You might be the unlucky one
How do you find things on the dark web without search engines? There are a lot of entry sites, set up with links to the most popular places. You can generally get a link to one of them by browsing places like reddit. From there it is a matter of checking out different places, people will put links in forums etc.
I also use a Pastebin where people paste sites they have made/found, and a Fresh Onion site, which crawls all the newly-populated .onion addresses
Hi. there!! Thank you for answering questions. Mine is very simple. How do sellers get the drugs to people? Regular mail? That's always puzzled me bc I'd assume USPS, UPS, fedEx or any other mail carrier would catch at least some goods. If people are ordering drugs, particularly in powder form, for personal use, they can be flattened, sealed in MBB (moisture barrier baggies) and sent in a regular business envelope, indistinguishable from billions of other envelopes going through the postal system every day. The chances of a particular package being intercepted is very low.
Some people take the extra precaution of having the person taking delivery of the drugs different to the person/household that is ordering them.
How did you move from being a corporate lawyer to researching and writing about dark web? I was in London, working for one of the most conservative law firms in the world when the Global Financial Crisis hit. I liked the job but it struck me when people were losing their livelihoods that I was working for the bad guys. I'd always wanted to be a writer so when I came back to Australia I quit law and enrolled in a writing course planning to be a novelist, but I discovered I was better at journalism. I first wrote for newspapers here about Silk Road and it grew from there
I've always wanted to check out the dark web, what is a normal day for you look like on there? Can you give me any tips on how to safely surf the dark web? A normal day looks like me sitting at my desk writing things on my computer. When I'm researching a book or a case I venture away from my computer to trials and to interview people (at least I did pre-COVID)
There is nothing inherently unsafe in surfing the dark web. All the usual precautions you take surfing the clearweb apply. Don't visit any child exploitation sites - it will be pretty obvious that's what they are by the names/descriptions before you log in.
It is only when you want to do more than surfing - e.g. buying drugs etc - that you need to do a LOT of homework or you will absolutely get scammed
Is there anything good about the dark web? It depends what you are into. A lot of academic research has concluded that the darknet markets provide a safer way for people to buy and use drugs, due to the ratings of vendors, services that independently test and report back on batches of drugs, doctor on staff ready to answer questions, no violence in transactions etc.
News sites provide a dark web option so that whistleblowers can safety provide information and upload documents that get stripped of any identifying metadata before being available.
It bypasses firewalls and allows for secure communications under hostile regimes
the below is a reply to the above
How does this make you feel about the idea of the decriminalization of drugs? I've always been for full legalization of drugs, and studying the darknet markets just proved I was right.
I was invited to an experts roundtable in Portugal about drugs and cybercrime a few years ago and the Portugal model of decriminalisation has been a great success
the below is a reply to the above
Hey, you are still answering. Been reading this thread for 1-2 hours now. Thank you so much for all the good work and info! Always been intrigued by this topic, downloaded tor once to explore a bit but couldn’t and deleted it right away, to be on the safer side. Great insights. Thanks! I've been writing it for about 14 hours. Going a bit loopy
How was working on Casefile? What's the production process like? Which episodes did u do?? I have listened to... all of them.... I absolutely LOVE working for Casefile. I am a freelancer, so I source and write my own cases and then sell the scripts to Casefile. I've done at least a dozen, but some of my most popular are Amy Allwine, Mark & John, Ella Tundra, Leigh Leigh, Rebecca Schaeffer...
As for the production process, once I have sold the script to them, a staff member edits them and then they are passed on to Casey to narrate. After that, they go to Mike for sound editing, music etc. They are the best team ever
the below is a reply to the above
Oh, Leigh Leigh was so well written!! How do you choose which stories to write? Do you just pick true crime you're interested in? Thank you! I have a huge list of potential episodes. Any time I come across an interesting crime on reddit, or in the news or wherever I make a note of it. Then I just pick one when it comes time to write a new script.
Sometimes I've been personally involved (e.g. Amy Allwine), gone to trials etc. Those are always the best ones
Hi Eiley, your twitter just reminded me of this AMA :) What are your thoughts on bitcoin? And would you prefer to be paid in crypto or fiat? OOOOH, I know that name! Love & Light to you!
I like Bitcoin and I wish I had a whole lot of it and like many many people, I wish I had kept the first crypto I bought at something like $4 a coin :D I do not have a whole lot of it but I do have a little bit. I like the philosophy behind it and in theory it should change the world. However the reality is that the vast majority of it is concentrated in a very few hands which allows for market manipulation and stops it being useful as a post-fiat currency.
As long as I'm getting paid, I'm pretty happy!
the below is a reply to the question
I too remember your name Pluto! Such a decent human ❤ he is!! True OG right there <3
Is the dark web subject to more racism than its counterpart, the world wide web? There are some white power sites and that sort of thing and the chans are even more uncensored than the clearweb ones (4chan, 8chan) but to be honest they are the same cesspools in different spots. Drug forums don't seem to be very racist. I've seen worse on Twitter
Have you seen any consequential political or social organizing being carried out on the dark web? Not directly, but the dark web helped facilitate the Arab Spring uprising in 2010 by allowing activists to remain anonymous and to access blocked websites and social media. Wikileaks, obviously. Some white supremacy organizations seem to use it to coordinate attacks, but they are not places I'm keen to hang out in.
What’s the most expensive thing for sale you’ve seen on the dark web? What was surprisingly inexpensive? I can't remember specific listings, but there were sometimes sales of things like coke by the kilo, so that sort of thing I guess.
LSD could easily be found for $1/tab and one huge dealer gave it away for free if it was for personal use
the below has been split into separate questions
1. I’m going to ask a couple in hopes that one will catch your interest! I know you’re anonymous on the dark web, but even so, have you ever felt worried about your safety? I actually made the decision to be upfront and honest about who I am on the dark web, so I use the name OzFreelancer (which is easily traceable to my real name) on all the dark web sites where i went looking for interviews. The people there had the option of talking to me or not, so they had no reason to want to harm me.
2. I’ve found your comments about your relationship with Yura fascinating. Did y’all develop a friendship? Did you build any other relationships that stand out in your mind? Since you were straightforward about being on the dark web for stories, did people seem reluctant to communicate, or were they excited for the opportunity to divulge a secret? We do have a friendship of sorts, it is really quite weird. I do hope to met him one day. I met all of the senior staff of Silk Road other than the Dread Pirate Roberts himself and keep in touch with some. Some people wanted nothing to do with me of course, but many more were happy to talk to me. i think sometimes it was a relief to them to be able to talk to one person who they knew was who they said they were.
3. On violent forums, did users ever express remorse, guilt, shame, or anything indicative of some recognition that what they were viewing/seeking was awful? Do you see doxxing teams on the dark web working together to uncover info, or is the info already there through previous hacks/breaches, and someone just accesses and releases it? Sorry if any of those don’t make sense! I’m not familiar with the dark web lingo but am so intrigued by your work. Not really. I think if they were contributing to the forums, they were comfortable with who they were and what they were doing. Many of the "regular" pedophiles expressed revulsion about Lux and hurtcore sites though
these have probably been asked before but has there ever been a time where you where genuinely been scared for your life and whats the most messed up thing you've witnessed did you have any help? Yeah both things have been answered in this thread, so I'll cut'n'paste
The only time I've felt even slightly in danger despite all this nosing around in there was when I helped uncover a hitman scam. The owner of Besa Mafia, the most profitable murder-for-hire site in history, came after me when I started writing about him. He made loads of threats ("you don't know who I am, but I know who you are and where you live") but that wasnt scary, as I had access to the backdoor of his site thanks to a friendly hacker and knew he didn't really want to hurt anybody.
It took a bit of a darker turn when he told the people who had signed up to work as hitmen on his site - and who he made video themselves burning cars with signs on them to advertise how legit his site was, then never sent them the promised money for doing so - that I was the owner of the site who had ripped them off. That could have become ugly, but luckily even the thugs weren't dumb enough to believe him.
The only other time I've been a bit nervous was when Homeland Security wanted to have a "friendly" meeting with me on one of my trips to the US to attend a trial. They were friendly, but scary too.
The most frightening experience I've ever had is coming face to face with Lux, the owner of Pedoempire and Hurt2theCore, the most evil and reviled person on the entire dark web. He was responsible for procuring and hosting Daisy's Destruction, the most repulsive video ever made, created by Peter Scully, whose crimes were so bad, the Philippines are considering reinstating the death penalty especially for him.
It wasn't frightening because Lux was frightening - he was anything but. It was frightening because he looked so inoffensive and normal.
It was frightening because he was living proof that monsters walk among us and we never know.
[deleted] It is absolute crap for browsing the clearweb, and a lot of sites detect that it is odd traffic and you have to solve their CAPTCHAs before doing the most basic things
I’m sure you’ve seen some really bad stuff, do you regularly talk to a therapist to help? I've never seen a therapist (they don't really seem to be a thing in Australia they way they are in the US), but I have been known to unload on my partner and my dog
the below is a reply to the question
Yo, speaking as an Aussie, they absolutely are a thing, you can get them covered thru medicare, and I recommend it if you possibly can! Bro, therapy is awesome. I'm not against therapy as a thing, but I've honestly never been so traumatised that I feel I need it. Also I had a bad experience with a psychologist after I watched my partner die in an accident - they suggested I find God, and I noped out of there
the below is another reply to the answer
Therapist is an American term- we call them psychs. And the one who told you to find God was terrible and out of line. Yeah she didn't last long before I was over it. Also a doctor decided I needed Xanax, which was also a bad move, because what I really needed was to grieve and Xanax doesn't let you do that properly
Do you find any good things on the dark web? Happy stuff that gives people hope? Or just the trash? I like the psychonaut communities. They just want peace, love and mungbeans for everybody
Have you heard of "The Primarch System" rumor of the dark web? Sounds downright silly to me. But I'm curious if anyone who spends time on the deep web actually takes it seriously, or if as an idea it is connected to anything serious at all. Nah, up there with the Shadow Web and Mariana's Web. There's always people who want to find out where the "deeper" "more secret" "really dark" stuff is. To them I say what, hurtcore isn't dark enough for you?
Doesn't delving the murky depths of child predator forums categorize you with the child predators in the eyes of an investigating law enforcement agency? Do you have some sort of amnesty due to your journalism, or is that something you worry about having to explain away? Has your presence there ever caused some sort of a scare? No, I never went into any of the sites that had actual photos or videos (you can't un-see that shit), but did spend a lot of time in pedophile discussion forums. I also went to a hurtcore hearing and saw screenshots in the police files, as well as listening for two days to videos being described frame-by-frame and private communications between the site owner and the sadists.
Besides drugs and sex crimes, what else is going on in the dark web? Are there other interesting nooks and crannies? I often post screenshots of bizarre sites I find on my Twitter. However, the main uses for the dark web are drugs, digital/fraud goods and child exploitation
I have one, it might be rather boring though, but here goes. On these "child predator forums" are they actually forums devoted to stalking children and do they share social media profiles of children among themselves? That would be kik ids, snapchat and facebook ids, instagram, stuff like that, info that would allow online access and that may have been chosen for suitability? Creepy question I know, but anyway I would be interested to hear your answer. I came here from TrueCrime, you referred to these things in your post on that sub. I suspect I already know the answer yet would like to hear your take on it. Yes, they provide information and tips on how to approach children, how to ensure they won't tell, how to sedate them in some instances, where to find child exploitation material, how to remove metadata and any identifying characteristics in photos and videos before sharing and so on.
They don't tend to share socia media, as that is the sort of thing that can be traced easily. They do talk about how to approach kids on social media and on the worst forums how to blackmail children into stripping/meeting etc
the below is a reply to the above
So you're saying they have a more general approach rather than identifying individual children on the internet? Again a creepy question because what I suggest is that a child's social media could be used and circulated on the dark web as potential information to gain access by anonymity, even if it was just online access only. I actually wonder as I have recently read of the anonymity of apps like ''kik messenger'' and how the police are often unable to get any information from the communications as they remain encrypted and off the server and require little if any valid ID to make an account. No doubt photos from social media are uploaded as part of the materials they have. I haven't seen anything where they get together and try to track down a specific child, but I'm sure some predators do this. Most are more likely to abuse children in their orbit - family, kids of friends, or they work where they have access to children
I heard there are forums to download books but it was really dangerous, Is it true? I'm just a poor guy who wants to finish the young Jack sparrow series Whenever you download anything from a pirate site you run the risk of infection
What do you think of QAnon? Wackjob conspiracy
the below is a reply to the above
Who should the conspiracy theorists actually be worried about if they actually care about thwarting pedophilia? The vast, vast majority of child abuse takes place within the child's personal orbit - relatives, family friends, parents of their own friends, people involved in their activities (coaches, leaders, etc)
So, those people
the below is another reply to the answer
Also how to we get people to stop believing in QAnon? Outside my area of expertise, sorry
do you personally believe there was/is any truth to the "defense" (story) that DPR was a title handed down to different admins for the original silk road, or was it just a convenient defense? do you have any theories as to who satoshi nakamoto is? besides the original SR, are there any other darkweb markets that you think have a good enough story to turn into a book? eg sheep market? i've seen you talk a little about the child predator forums, and (as with h2tc) noted are mainly populated by males. i'm curious if you've ever encountered females on such forums/websites (eg. btfk) No. There was a time that I believed the person posting on the forums as DPR changed, but the ownership and administration of the market I believe never changed hands. Variety Jones is claiming a part ownership (which may or may not be true) but I believe that is so he can run a Fourth Amendment argument
So many theories have some credibility to them, but no one theory ticks all the boxes. Highly recommend the 3-part youtube deep dive by Barely Sociable
I'm not sure any one market has the story that Silk Road had, but I would like to write a definitive history that encompasses the most compelling features of all the markets. Backopy of BMR apparently got away clean. The admins of Atlantis got wind of a security issue and closed shop, trying to warn DPR. AlphaBay ended in Alexander Cazes death in a Bangkok prison cell. Then everyone flocked to Hansa, which by that time was being run by law enforcement. Evolution ended in the most brazen exit scam, followed by a bizarre cloak'n'dagger situation played out right here on reddit. The WSM/DDW follow-the-money case. And these are just some that come right off the top of my head. I just need a publisher to provide me an advance I can live off while I write it!
There were a very few people on the forums who identified as female (obvs anyone can be anyone on a dark web forum) and there have been one or two arrests of women in relation to dark web child pornography. Peter Scully's female assistant who carried out some of the torture was originally one of his victims, turned into a sadist.
What’s the one lingering unanswered question you have about SR? I am hanging out for Joel Ellingson to go to trial so that I can find out once and for all whether redandwhite, lucydrop and Tony76 are one and the same person.
There are several people who I got to "know" by their handles who I wonder about from time to time, but mostly I hope they are safe and well and i don't want to track them down or expose them
the below is a reply to the above
Eileen, I am fangirling PRE-TTY hard right now. Talking SR and Tony76 with you is how I imagine it feels to talk to a royal correspondent about Prince Andrew 😅 Ellingson being all three would be a very neat end to an otherwise insane story. Part of me wants to pin Oracle in with that trio too but that’s mostly a desperate attempt from me to add another layer to the madness. I miss the twists and turns that came with the rise and fall of SR. From your own experience - would you agree with the idea that more than one person staffed the DPR account? Thanks for the reply! Ha! You have no idea what it is like when I find someone who really knows about this stuff and can have informed conversations about it. I latch onto them and don't let go. The very BEST was meeting up with DPR's three deputies (SSBD in Australia, Inigo in US and Libertas in Ireland) so I could actually have conversations with people who knew more than I did! Variety Jones was cool too, but the conversation couldn't flow too freely thanks to him being incarcerated in Bangkok prison at the time.
I think others sometimes posted from the forum account, but Ulbricht kept a vice-like grip on his market account
the below is a reply to the above
I can imagine it’s so satisfying and exciting to get those tidbits of info that piece the jigsaw together. The bedlam that played out over the forum in the aftermath was a cloud of paranoia and adrenaline that kept me refreshing pages for days. Would love to hear accounts from SSBD, Inigo and Libertas from this time. One last question: what were your thoughts when the Chloe Ayling story first broke? I assumed it was a publicity stunt. I don't think that any more. I guess I can't blame her for milking her kidnapping for publicity in the aftermath, though I don't think she does herself any favors the way she goes about it sometimes
Sorry if this has been covered before but in your research, mainly related to child abuse, where are these children coming from? Children in their care/ family? Kidnapped? The vast majority of child abuse is carried out by someone within their social circle - family and acquaintances. However, the hurtcore stuff was often carried out in third world countries on orphans or where desperate families gave up their children to "benefactors" who they believed were going to provide food an education
What Casefile episodes have you written? I became obsessed with it and ripped through all the episodes and now nothing will fill that void. Thanks for your efforts! Casefile – the murder of Amy Allwine
Casefile – Blue Skies, Black Death
Casefile – Ella Tundra
Casefile – Dnepropetrovsk Maniacs
Casefile – Motown Murders
Casefile – Rebecca Schaeffer
Casefile – Sian Kingi
Casefile – John & Mark
Casefile – Shauna Howe
Casefile – Chloe Ayling
Casefile – Johnny Altinger
Casefile – Killer Petey
Casefile – The Santa Claus Bank Robbery
Casefile – Martha Puebla
Casefile – Leigh Leigh
Is there any way parents can keep their kids safe from this without being helicopter parents? I'll cut'n'paste a response i gave to someone else about this, because it was something that really stuck out to me:
The one thing I found really interesting when I was lurking the forums of the child predators was their frustration about how children are now taught from a very young age that certain touching and acts are wrong and that they shouldn't keep certain secrets. It came up over and over again that they could not abuse certain children because they knew those children had someone they would tell. It was pretty clear that education was a child's best defence against getting abused. Kids who speak up and who have close relationships with one or more people they are likely to confide in
What does it take in terms of degrees and experience to get into this business? Nothing official. I was a lawyer, but that had no bearing on what I do now (I did corporate law). I didn't have any official credentials when I began as a freelance journalist, though later I got a diploma of professional writing and editing. Anyone can be an author, provided they can write
If you could take a guess from your findings, what would be some speculative statistics on these abuse/torture sites? How many people (tens of thousands?) are involved? Do they generally come from the same places in the world or are they seemingly geographically random (based on victim ethnicity, or language spoken, perhaps)... what are some quantifying stats to wrap our heads around how prevalent this shit is? Most dark web users come from western countries, just because infrastructure supports it. The sites often have tens of thousands of registered users, but a lot of them would be people for whom curiosity got the better of them and who signed up then left. Active users more like in the thousands, hyper-active users the hundreds.
One of the things that makes life difficult for law enforcement is that most of these sites don't operate on a commercial basis - people aren't making money from them, so there is no cryptocurrency chain to follow. They operate on a sharing basis and to get access to the more private parts of the sites, a user has to upload "fresh" material and/or prove they are actively abusing a child. Hurt2theCore used to get users to have the children hold up signs or have the site name or a username written on their bodies with a marker. This stopped law enforcement from getting access to those parts (like the "producers lounge") of the sites unless they were able to take over an account of a user who already had access. Even then, the rules of the hurtcore sites would require constant new proof in order to maintain access.
Some sites allowed people to buy access, such as one called "Welcome to Video" and then were taken down by law enforcement carrying out blockchain analysis of the Bitcoin transaction that led to the owner when they cashed out to fiat without moneylaundering precautions
the below is a reply to the above
Do you think LE uses deep fakes to simulate a picture to gain access? Is that possible? It is definitely possible, but I don't know whether they are doing it as they are understandably secretive about their methods. I know it is deeply problematic, as even fake child porn is still illegal (even cartoon stuff, including some Hentai in some countries). But they have used questionable methods before, most notably running the dark web's largest site, Playpen, for over a year in order to identify contact offenders
the below is another reply to the original answer
Am I hearing you that many people are NOT doing this for financial gain? Just to do it and share it?? Child exploitation, yes, it is mostly a sharing community. Some people make some money out of it, but it is not like drugs where a lot of people are making a LOT of money
On the subject of abused kids... did you ever help the kids in any way? I never met any of the kids. I never saw any of the photos and videos. I don't know who any of the kids are.
Daisy has been taken into care and her identity changed. I hope she is doing okay
What exactly does the dark web look like? You hear about it often, but don’t know if it looks like Google Chrome, Safari, or just a page full of code. It looks like a normal browser and operates just like a normal browser. It's just that it can access sites that your normal browser can't.
e.g. http://thehub5himseelprs44xzgfrb4obgujkqwy5tzbsh5yttebqhaau23yd.onion/index.php is the URL of a dark web forum. If you plug it into your normal browser you will get an error. If you plug it into the Tor browser you will get the registration page for The Hub
How do you keep yourself from hating all humanity? I am happy to report that, even on the dark web, the good people outnumber the bad
Hi! First off I'd like to say that I find what you do quite fascinating and would love to do something like that in the future. My question is in regards to art and other forms of artistic expression on the dark web. Is it true that the dark web is a place where you can also find awesome things such as art and literature? Not really, because all that stuff is readily available on the clearweb. There are sites like the Imperial Library of Trantor, which is a pirate site for books, where you can read thousands of books for free, but that's really no different to The Pirate Bay. Some people share their LSD art, but again, nothing you won't find on the clearweb
submitted by 500scnds to tabled [link] [comments]

How does a blockchain work - Simply Explained - YouTube Bitcoin Code Explained What is The History of Bitcoin: Super Easy Explanation ... Bitcoin Code - YouTube [ASMR] Bitcoin Source Code Explained

The Bitcoin Code Software. Welcome to the Official Bitcoin Code website. Buy and Trade Bitcoin with The Bitcoin Code. Automated Trading and Signals. Bitcoin Code Review: If you’re checking to turning out to be an automobile dealer in Europe, subsequently you can’t ever fail with Bit coin Code.Bit coin Code can be a car buying and selling crypto money program which enables one to execute your own trading on the web whenever you intend to. Bitcoin Code is a group reserved exclusively to people who jumped on the insane returns that Bitcoin offers and have quietly amassed a fortune in doing so.. Bitcoin Code Members enjoy retreats around the world every month while they make money on their laptop with just a few minutes of “work” every day. Bitcoin Code is an auto trading software developed by Steve McKay that performs trades with Bitcoin and cryptocurrencies for their users. Bitcoin Code makes a live trading session accessible to The Bitcoin Code. The so-called “Bitcoin Code” is a scam operation whose website is continually changing. Like many scams, the website offers a service which is said to predict market trends

[index] [9250] [22599] [28551] [18366] [1157] [23309] [6023] [13003] [3137] [8717]

How does a blockchain work - Simply Explained - YouTube

Verdienmodel vervelende Bitcoin Code advertenties uitgelegd - Duration: ... Bitcoin Basics (Part 1) - "Explained For Beginners" - Duration: ... First look at the Bitcoin source code - Duration: ... What is a blockchain and how do they work? I'll explain why blockchains are so special in simple and plain English! 💰 Want to buy Bitcoin or Ethereum? Buy fo... ----- Bitcoin Source Codes ----- The bitcoin Github release page - versions 0.1.5 to 0.15: https://github.com/bitcoin/bitcoin/releases A copy of the first or... The math behind cryptocurrencies. Home page: https://www.3blue1brown.com/ Brought to you by you: http://3b1b.co/btc-thanks And by Protocol Labs: https://prot... [ASMR] Bitcoin Source Code Explained - Duration: 2 minutes, ... 8:10. Bitcoin Code Explained - Duration: 8 minutes, 10 seconds. 3,008 views; 5 years ago; This item has been hidden. Language: English

#